INSTALLATION

The power supply terminals should be connected with a capacitor of at least 470uF. The capacitor pins must be as close as possible to the driver screw terminals.
In case of a rapid deceleration or during the braking time, especially with large inertial loads, the motor could become a generator of a consistent electrical power: this energy must be conveniently resent to the power supply. If the power supply unit is not able to absorb this energy, the supply voltage could raise over the maximum allowed level, with the risk of damaging the driver or the generator. To prevent this problem, we suggest to connect a 160 V zener diode between the positive pin and the ground. This zener should have a power dissipation capability of more than 5 W . A suitable fuse must be connected between the zener diode and the power supply
As a general rule of thumb, the supply current is about $2 / 3$ of the driver set current.
We suggest to connect an additional capacitor between the general power supply conductors (the value can be determined using the follwing formula:

$$
C=\frac{80,000 * I_{a \lim }}{V a \lim }[u F]
$$

Wirings diagram

PRECAUTIONS FOR ELECTROMAGNETIC COMPATIBILITY

1. Separate the phases and the power supply wires from the signal cables
2. Keep the connections as short as possible and use shielded cables for control signals
3. Do not insert capacitors, inductors or any electronic component on the motor wiring
4. Connect only one side of the cable shields
5. Connect the motor case to an efficient ground point
6. Use an appropriate size for power wires

SAFETY

It is the responsibility of the user to be sure this unit is used in compliance with the safety requirements. For further information, please call our technical department.

```
Astel
Electronics and industrial automation
www.astel.it
el. 0125-23907
```

electronics and industrial automation

STP900D-120

STEPPER MOTOR DRIVER 9A - 120V

STP900D is a compact, high performances stepper driver board with built-in step generator, suitable for medium power motors. A wide range of accessoires is available for your custom application

CHARACTERISTICS

- Microprocessor controlled
- 8 preset current levels up to 9 A rms
- Optocoupled inputs
- Automatic stand-still current reduction
- Built-in step generator (VCO)
- Dip-switches for settings
- Short-circuit, over temperature and over voltage built-in protection
- Automatic optimized current recirculation
- Compact size, walll format

Vdc min	40 V
Vdc $n o m$	120 V
Vdc max	150 V
Irms min	$2 \mathrm{~A}(\mathrm{rms})$
Irms max	$9 \mathrm{~A}(\mathrm{rms}), 12.7 \mathrm{~A}$ (peak)
VCO range $(\pm 20 \%)$	$10-500 \mathrm{~Hz}$
	$200 \mathrm{~Hz}-4 \mathrm{KHz}$
Max STEP freq.	35 KHz
Step resolution	$1 / 1,1 / 2,1 / 4$ step
Chopping frequency	30 KHz
Operating temperature	$0^{\circ}-50^{\circ} \mathrm{C}$
Motor inductance	$>0.5 \mathrm{mh}$
Dimensions	$170 \times 100 \times 65 \mathrm{~mm}$

J1.

PIN	SOWER SUPPLY	
1	VPOW	Power supply Positive terminal $(40-150 \mathrm{~V})$
2	GND	Ground -

J2.

PIN	SIGNAL	I/O		DESCRIPTION
1	A1	O	Motor winding A, pin 1	
2	A2	0	Motor winding A, pin 2	
3	B1	O	Motor winding B, pin 1	
4	B2	O	Motor winding B, pin 2	

J3. OPTOCOUPLED INPUT SIGNALS (input voltage: $5 \div \mathbf{2 4} \mathrm{Vdc}$)

PIN	SEGNALE	I/O	DESCRIZIONE
1	DIR +	1	Direction - This level input controls the direction of the motor shaft rotation (see NOTE2). This signal shall be valid at least 20us before changing the STEP and must remain stable more than 20us after the last step pulse. The clockwise or counterclockwise rotation depends on motor connections. The motor can runs, even if DIR command is inactive or not connected
2	DIR -	I	
3	STEP +	I	Step -The motor advances in the given direction, when this signal change from INACTIVE level to ACTIVE (see NOTE 2) Suggested duty-cycle : 50%.
4	STEP -	1	
5	ENA +	1	Enable - If this signal is active, the driver is enabled. If ENA is not connected or inactive the driver is disabled (see NOTE 2)
6	ENA -	1	
7	OK+	0	Drive-OK - this output is a transistor signal (npn or pnp configurable; see NOTE 2) which turns off in the event of a fault (the driver will deenergise).
8	OK-	O	

J5.

| PIN | STEP GENERATOR (VCO) | | |
| :--- | :--- | :---: | :--- | :--- |
| 1 | RIF+ | I/O | DESCRIPTION |
| 2 | CTRL | I | VCO positive terminal |
| 3 | RIF- | VCO control input (see "OSCILLATOR") | |

NOTE1: Depending on motor type, connect the windings (4, 6 or 8 wires) as follow:

NOTE 2: Control signals wiring examples (optocoupled signals):

PNP INPUT
NOTE3: J4 connector is used with plug-in boards

RESOLUTION

AUTOMATIC CURRENT REDUCTION

$\mathbf{7}$		RISOLUZIONE
OFF	OFF	Full-step (200 steps/rev typ.) WAVE
OFF	ON	$1 / 4$ step (800 steps/rev typ.)
ON	OFF	$1 / 2$ step (400 steps/rev typ.)
ON	ON	Full-step (200 steps $/$ rev typ.) 2 PH-ON

Step generator: frequency range

| DIP-SWITCH | VCO RANGE ($\mathbf{1} \mathbf{2 0 \%)}$ | |
| :---: | :---: | :---: | :---: |
| ON | | $10 \mathrm{~Hz} / 500 \mathrm{~Hz}$ |
| OFF | | $200 \mathrm{~Hz} / 4 \mathrm{KHz}$ |

CURRENT SELECTION

$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Nominal current
OFF	OFF	OFF	2 A
ON	OFF	OFF	3 A
OFF	ON	OFF	4 A
ON	ON	OFF	5 A
OFF	OFF	ON	6 A
ON	OFF	ON	7 A
OFF	ON	ON	8 A
ON	ON	ON	9 A

When the switch (5) is ON, the driver reduces the winding current at about the 70% of set current after 250 ms from the last step

DIP-SWITCH settings

OSCILLATOR (VCO)

When this switch (8) is in the ON position, the step signal is internally generated. The generator should be disabled when an external step is used. The generator frequency can be modified connecting to J 5 an external potentiometer ($\mathrm{R}>1 \mathrm{k} \Omega$ fig.A) or supplying an external voltage on pins 2-3 (fig. B). This external voltage should be between OV (min. Freq.) and 12Vcc (max freq.)

NOTE4. POWER BRIDGE RECIRCULATION MODE

STP900D adopts an innovative power bridge current recerculation technique which optimizes the performances of the driver (less power dissipation, best torque uniformity control, less shaft vibrations and motor noise)

The adaptative algorithm controls the current path in the bridge switching between the suitable REGENERATIVE and NOT REGENERATIVE mode.

