INSTALLAZIONE

Le indicazioni seguenti sono rivolte ai clienti che desiderano dotare gli azionamenti di una propria alimentazione senza acquistare le schede di interfaccia ASTEL.

I terminali di alimentazione devono avere un condensatore di almeno 470uF connesso il più vicino possibile ai terminali di ingresso.

Durante i movimenti dotati di rapide accelerazioni o in caso di carichi dotati di un'inerzia elevata, il motore diventa generatore di una considerevole energia; questa viene restituita all'alimentatore. Se quest'ultimo non è in grado di assorbire questa energia, la tensione di alimentazione potrebbe superare il livello massimo consentito, danneggiando sia l'alimentatore sia l'azionamento. Per prevenire questo problema, è consigliabile inserire un diodo zener connesso tra il terminale positivo di alimentazione e la massa. Si consiglia di utilizzare un tipo di almeno 5W. Un adeguato fusibile deve essere interposto tra il diodo zener e l'alimentatore. La corrente di alimentazione assorbita dall'azionamento è pari circa ai 2/3 della corrente predisposta sull'azionamento. È inoltre utile collegare un'ulteriore condensatore sull'alimentazione generale

il suo valore può essere calcolato dalla formula seguente : $C = \frac{80,000*I_{a \text{ lim}}}{Va \text{ lim}}[uF]$

INTERFERENZE E RADIOEMISSIONI

- 1. Separare i percorsi dei cavi delle fasi e dell'alimentazione da quelli di segnale
- 2. Tenere i collegamenti più corti possibile e utilizzare cavi schermati per i segnali di controllo.
- 3. Non inserire condensatori, induttori o qualsiasi altro componente sui terminali del motore
- 4. Collegare le calze schermanti ad una sola estremità
- 5. Collegare a massa la carcassa del motore.
- 6. Non sottodimensionare i fili dei cablaggi.

SICUREZZA

È responsabilità dell'utilizzatore che l'installazione risponda alle norme di sicurezza previste. Per ulteriori informazioni non contenute nel presente fascicolo, rivolgersi alla casa madre.

Astel

Electronics and industrial automation www.astel.it techsupp@astel.it tel. 0125-239072

STP650SM QM IT 1 0 0.odt

ASTEL electronics and industrial automation

STP650S/1000SM AZIONAMENTI uSTEP PER MOTORI STEPPER

Gli azionamenti STP650SM e STP1000SM sono adatti la pilotaggio di motori passo passo per applicazioni ad alte prestazioni. Possono operare con tensioni comprese tra 24 e 120Vdc e con correnti nominali fino a 10A. Impiegano una tecnologia dell'ultima generazione per garantire le migliori prestazioni. Lo stadio di uscita è di tipo MOSFET bipolare per contenere i consumi e migliorare il rendimento del sistema. Gli ingressi sono optoisolati per un'elevata immunità al rumore. Un completo sistema di protezioni contro i cortocircuiti ed i sovraccarichi limita i rischi di installazione.

È disponibile una vasta gamma di accessori, schede di controllo per completare il sistema richiesto.

	STP650SM/70	STP650SM/120	STP1000SM/70
Vdc min	24	40	24
Vdc nom	70	120	70
Vdc max	85	135	85
Irms min		1.6	2.5
Irms max	(5.5	10
Ipk max	ý	9.1	14
Risoluzione		1/1 1/2 1/4 passo	
Frequenza chopping		24KHz	
Temperatura		da 0° a 50° C	
Induttanza del motore		> 0.5 mH	
Dimensioni	100x168x44mm	100x168x44mm	100x168x74mm

Vdc min: Minima e massima tensione di alimentazione. Al di fuori di

questi limiti, intervengono le protezioni di minima e massima tensione che bloccano il funzionamento dell'azionamento.

Vdc nom: Valore nominale della tensione di alimentazione. La tensione di

alimentazione può essere non stabilizzata, in questo caso è

conveniente che il ripple non sia superiore al 10%.

Irms min.: Valore minimo della corrente di fase (RMS).

Irms max.: Valore massimo della corrente di fase (RMS).

Ipk max : Valore di picco della corrente di fase, effettivo solo durante il

funzionamento a mezzo passo e a quarto di passo.

Temp.: Gamma di temperatura ambiente nella quale l'azionamento

funziona in condizioni ottimali. In relazione ai cicli di lavoro ed

alla corrente impostata, può essere necessario disporre di

un'adeguata ventilazione.

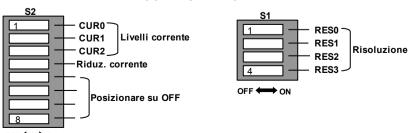
INTERCONNESSIONI

Tutti gli ingressi sono optoisolati per garantire un'elevata immunità ai disturbi anche negli ambienti industriali più difficili. Con il ponticello J1 chiuso gli optoisolatori sono alimentati da una sorgente interna a 12V, consentendo l'utilizzo dell'azionamento senza la necessità di fornire un'alimentazione esterna. L'uscita di Fault è a collettore aperto di tipo NPN (max.30Vdc-25mA) e deve essere terminata esternamente con un resistore di adatto valore.

I segnali logici e di potenza sono riportati su una morsettiera a vite che vista frontalmente ha il PIN 1 di riferimento verso sinistra:

MORSETTIERA

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----


SEGNALI LOGICI

PIN	SEGNALE	I/O	DESCRIZIONE
16	VOPTO	I	Alimentazione esterna per optoisolatori
15	ENABLE	I	Abilitazione - Se non collegato o a livello logico alto
			l'azionamento è disabilitato, se chiuso a GND o a livello logico
			basso, l'azionamento è abilitato
14	STEP	I	Avanzamento motore - Il motore avanza sulla transizione
			alto/basso.
12	DIR	I	Direzione - Determina la direzione di rotazione del motore - Deve
			essere valido almeno 20us prima del segnale di STEP e 20us dopo
			l'ultimo passo
11	FAULT	О	Errore - Quando questa uscita è a livello logico alto segnala un
			malfunzionamento e l'azionamento è disabilitato. Per
			riportare l'azionamento in condizione operativa è necessario
			togliere tensione per almeno 10s.

SEGNALI DI POTENZA

PIN	SEGNALE	DESCRIZIONE
1 - 2	GND	Riferimento comune - Massa dell'alimentazione e punto
		di connessione della calza dei cavi schermati
13	V+	Alimentazione - Alimentazione di potenza
9 - 10	PHA1	Terminale 1 della fase A del motore
7 - 8	PHA2	Terminale 2 della fase A del motore
5 - 6	PHB1	Terminale 1 della fase B del motore
3 - 4	PHB2	Terminale 2 della fase B del motore

IMPOSTAZIONI DIPSWITCH

IMPOSTAZIONI

RISOLUZIONE(S1)

D	IP-SW	ITCH S	S1	1112	RISOLUZIONE					
1	2	3	4	uSTEP/GIRO STEP/GIRO						
	BINARIO (MOTORI 1.8°)									
ON	ON	ON	ON	2	400					
OFF	ON	ON	ON	4	800					
ON	OFF	ON	ON	8	1600					
OFF	OFF	ON	ON	16	3200					
ON	ON	OFF	ON	32	6400					
OFF	ON	OFF	ON	64	12800					
ON	OFF	OFF	ON	128	25600					
OFF	OFF	OFF	ON	256	51200					
				D	ECIMALE (MOTORI 1.8°)					
ON	ON	ON	OFF	5	1000					
OFF	ON	ON	OFF	10	2000					
ON	OFF	ON	OFF	25	5000					
OFF	OFF	ON	OFF	50	10000					
ON	ON	OFF	OFF	125	25000					
OFF	ON	OFF	OFF	250	50000					
ON	OFF	OFF	OFF	COMBINAZ. NON VALIDA						
OFF	OFF	OFF	OFF	COMBINAZ. NON VALIDA						

SELEZIONE DELLA CORRENTE(S2)

1	2	3	STP650	STP1000
OFF	OFF	OFF	1.6A (rms) (2.2 A picco)	2.5A (rms) (3.5A picco)
ON	OFF	OFF	2.3A (rms) (3.2 A picco)	3.6A (rms) (5.0A picco)
OFF	ON	OFF	3.0A (rms) (4.2 A picco)	4.7A (rms) (6.6A picco)
ON	ON	OFF	3.7A (rms) (5.2 A picco)	5.8A (rms) (8.1A picco)
OFF	OFF	ON	4.4A (rms) (6.2 A picco)	6.9A (rms) (9.7A picco)
ON	OFF	ON	5.1A (rms) (7.2 A picco)	8.0A (rms) (11.2A picco)
OFF	ON	ON	5.8A (rms) (8.2 A picco)	9.1A (rms) (12.7A picco)
ON	ON	ON	6.5A (rms) (9.1 A picco)	10A (rms) (14.1A picco)

RIDUZIONE AUTOMATICA DELLA CORRENTE

Quando il relativo interruttore (4) è in posizione OFF, l'azionamento riduce la corrente nelle fasi del motore approssimativamente al 30% del valore impostato dopo 100ms dall'ultimo passo effettuato.

DIAGNOSTICA

LD2	LD3	Significato
rosso	verde	
OF	O N	Funzionamento corretto
\boldsymbol{F}		
OFF	OFF	Anomalia alimentazione (tensione troppo elevata o troppo bassa)
ON	ON	Sovratemperatura
OFF	ON	Cortocircuito o errata connessione del motore
	rosso OF F OFF ON	OFF OFF ON ON